Stream Restoration Design & Implementation

Greg Jennings, PhD, PE jenningsenv@gmail.com

- 1. Channel morphology
- 2. Floodplain structure
- 3. Hydrologic & hydraulic analysis
- 4. In-stream structures
- 5. Habitats & vegetation
- 6. Site & watershed conditions
- Monitoring, maintenance, 7. education

Basic Science: Fluvial Geomorphology:

study of landforms and the fluvial processes that shape them

Fluvial Processes:

associated with flowing water, including sediment erosion, transport, and deposition

Fluvial Forms

- Bar ٠
- Channel
- Confluence
- Cutoff channel
- Delta Floodplain
- Gorge
- Gully
- Meander
- Oxbow lake
- Pool
- Riffle
- Stream
- Valley
- Waterfall
- Watershed

What is a Stream?

... a body of water with a current, confined within a bed and streambanks

Synonyms: bayou, beck, branch, brook, burn, creek, crick, kill, lick, rill, river, rivulet, run, slough, syke

Streams are conduits in the water cycle and also important habitats

Stream: A system of fluvial forms & habitats

- Channel (bed & banks) ٠
- Floodplain
- Water •
- Sediment •
- Plants & animals

Stream Connections

- Mostly downstream fluxes of energy and matter
- Lateral and vertical connections to the riparian and hyporheic zones

Courtesy of Francois Birgand, NCSU

Stream (Ecosystem) Restoration "activities that initiate or accelerate the recovery of ecosystem health, integrity, and sustainability" (SER, 2004) Image: Stream Content of the stream of the stream

Stream Restoration is a Systematic Process

- 1. Planning & Assessment
- 2. Engineering
- 3. Construction & Planting
- 4. Monitoring, Maintenance, Adjustments

Samford Univ Shades Creek

Daphne UT D'Olive Creek

Goals of Stream Restoration Projects

- Improve habitats & water quality
- Improve recreation & aesthetics
- Protect infrastructure & land value
- Educate citizens & decision-makers

Daphne UT D'Olive Creek

Samford Univ Shades Creek

Stream Restoration as a BMP

- · Sediment control
- Nutrient cycling (instream & floodplain)
- Peak discharge attenuation
- Habitats (aquatic & terrestrial)
- · Infrastructure protection

Standards for ecologically successful river restoration

Palmer et al., Journal of Applied Ecology, 2005, 42, 208-217

- design of an ecological river restoration project should be based on a specified guiding image of a more dynamic, healthy river
- 2. river's ecological condition must be measurably improved
- river system must be more self-sustaining and resilient to external perturbations so that only minimal follow-up maintenance is needed
- 4. during the construction phase, no lasting harm should be inflicted on the ecosystem
- 5. pre- and post-assessment must be completed and data made publicly available

Restoration Planning & Design

- 1. Objectives?
- 2. Constraints?
- 3. Design Approach?
- 4. Permitting?
- 5. Construction?
- 6. Monitoring & Maintenance?
- 7. Funding?

Stream Design Approaches

- 1. Threshold Channel
- 2. Alluvial Channel
 - a. Regime Equations
 - b. Analogy (Reference Reach)
 - c. Hydraulic Geometry
 - d. Analytical Models
- 3. Combination of Methods

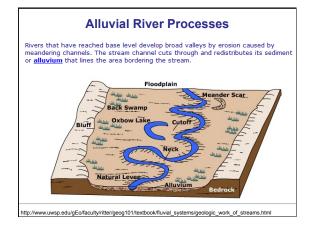
Threshold Channels

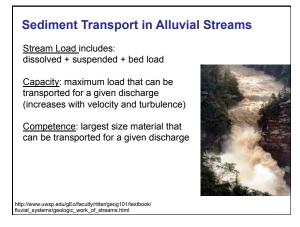
1. Rigid boundary systems

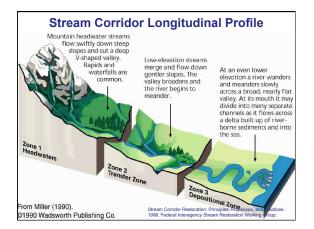
 Simple design approach: select channel configuration where the stress applied during design conditions is below the allowable stress for the channel boundary

Technique	Significant sediment load and movable channel boundaries	Boundary material smaller than sand size	Boundary material larger than sand size	Boundary material does not act as discrete particles	No baseflow in channel. Climate can support permanent vegetation
Allowable velocity		X			
Allowable shear stress			X		
Tractive power				X	
Grass lined/tractive stress					Х
Alluvial channel design techniques	х				

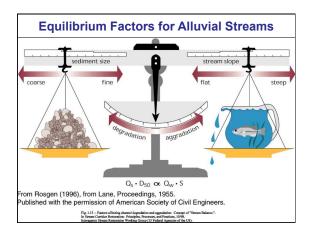
Alluvial Channels


- 1. Movable boundary systems ("natural" streams)
- 2. Complex design approach: assess sediment continuity and channel performance for a range of flows
- 3. Dependent variables: Width, Depth, Slope, Planform
- 4. Independent variables: Sediment inflow, Water inflow, Bank composition
- 5. <u>Empirical & Analytical</u> approaches should be used concurrently



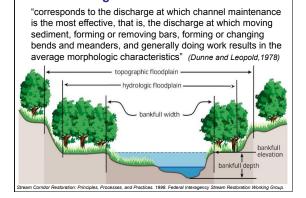

Assumption: Stream Behavior Is Predictable

- · Streams evolve to a state of dynamic equilibrium
- Equilibrium is a function of flow and sediment
- Equilibrium is naturally associated with a main channel and a flood-prone area
- Channel is formed by the effective ("bankfull") discharge
- Alluvial stream meandering is predictable



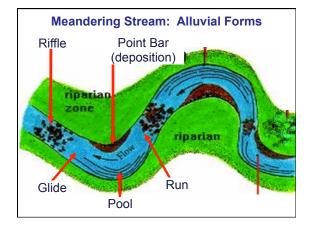
Natural Stream Channel Equilibrium (from Leopold)

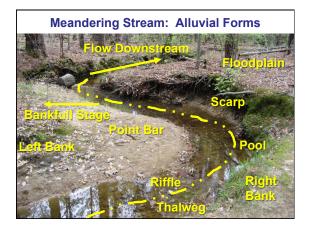
- River has a stable dimension, pattern and profile
- Maintains channel features (riffles, pools, steps)
- Does not aggrade (fills) or degrade (erodes)



Equilibrium Controlling Variables

- Width
- Depth
- Slope
- · Velocity
- Discharge
- · Flow resistance
- · Sediment size
- · Sediment load
- Leopold et al (1964)





Bankfull Stage

Natural Channel Design: Alluvial Channels

- 1. Existing Conditions valley, watershed, constraints
- 2. Design Parameters (Channel & Floodplain)
 - a. Reference Reaches (Analogy)
 - b. Completed Restoration Projects (Analogy)
 - c. Hydraulic Geometry Regional Curves (Empirical)
 - d. Regime Equations (Empirical)
- 3. Analytical Models to Test Range of Discharges

Reference Reaches:

Morphology design parameters serve as a "starting point"

Reference Reaches:

- Channels well-connected to alluvial floodplains with little evidence of incision (bank height ratios less than 1.2)
- Freely-formed meanders with alternating riffles and pools
- Streambanks and floodplains well-vegetated with no erosion
- · Upstream watersheds mostly forest and agriculture
- Stable and unconfined for a length 20 times bankfull width

Reference Reaches:

- Upstream/downstream
- Similar watersheds
- Databases
- Historical photos

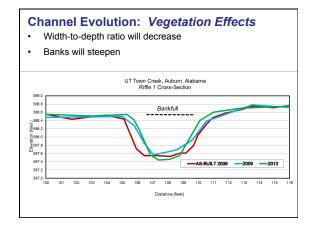
Similar bed/bank materials; hydrology; sediment inflow; slope; valley

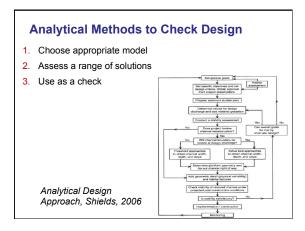
Completed Projects:

- Upstream/downstream
- Similar watersheds
- Successes & Failures

Channel Evolution: Vegetation Effects

- Width-to-depth ratio will decrease
- Banks will steepen


As-built:

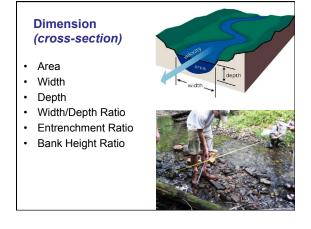

 $\begin{array}{l} A_{bkf}=4.5 \text{ sq ft} \\ W_{bkf} \,/\, d_{bkf}=7.6 \,/\, 0.6=13 \\ \text{Bank Angles: } 3:1 \end{array}$

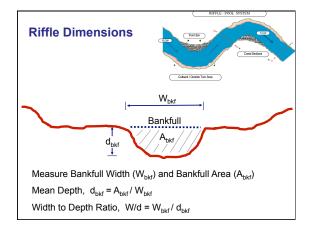
5 Years Later:

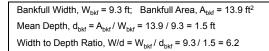
 $\begin{array}{l} A_{bkf}=3.8 \text{ sq ft} \\ W_{bkf} \,/\, d_{bkf}=5.4 \,/\, 0.7=8 \\ \text{Bank Angles: Near Vertical} \end{array}$

Restoration Components

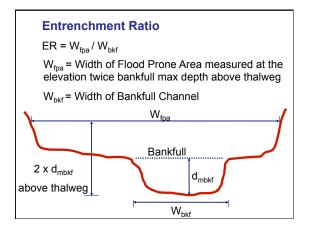
- 1. Channel morphology
- 2. Floodplain structure
- 3. Hydrologic & hydraulic analysis
- 4. In-stream structures
- 5. Habitats & vegetation
- 6. Site & watershed conditions
- 7. Monitoring, maintenance, education

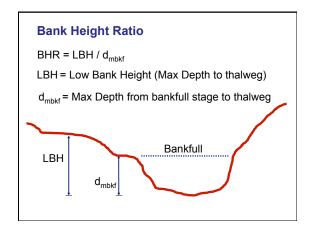


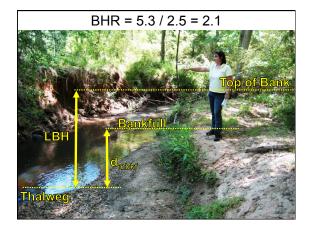

1. Channel Morphology

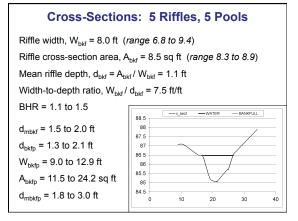

- Dimension (baseflow, bankfull, flood flows)
- Pattern (meandering, straight, braided)
- Profile (bedform riffle, run, pool, glide, step)

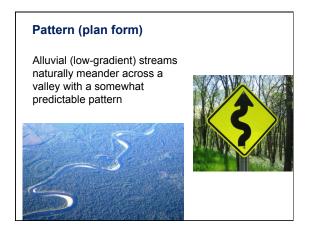
Vestavia Hills: Little Shades Creek, 2011

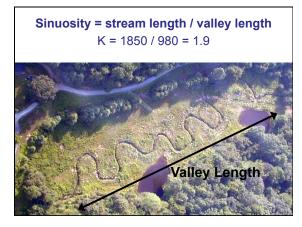


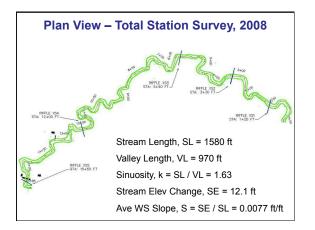


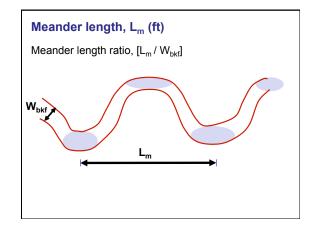


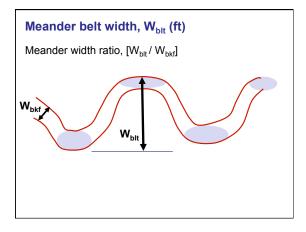


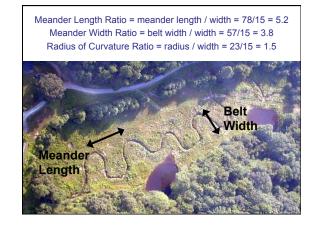


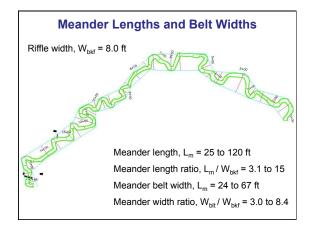


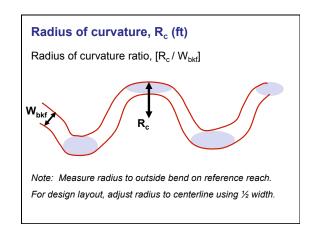


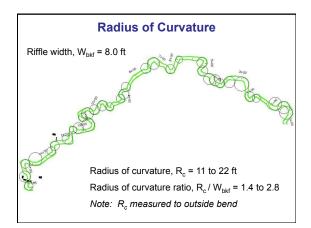


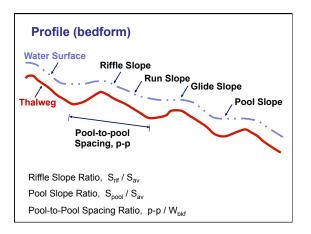


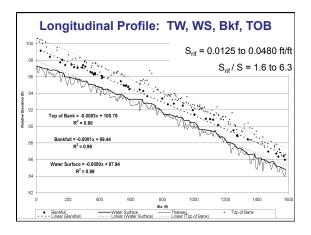


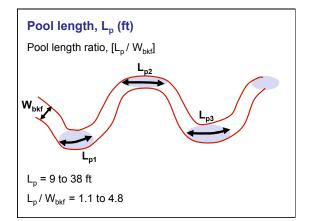


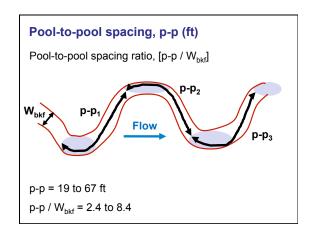


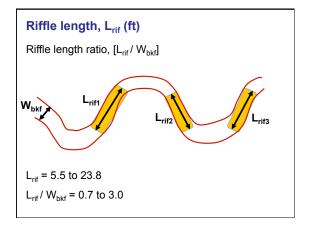


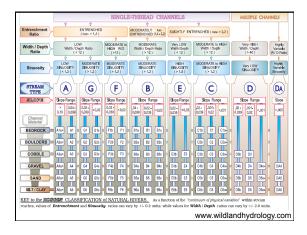










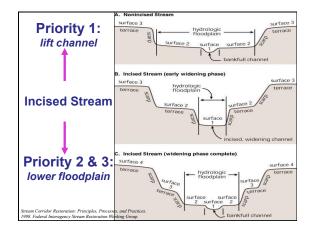


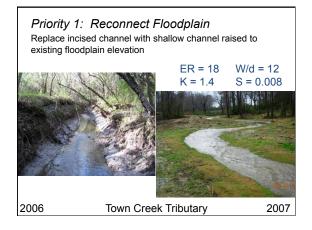
Bed Material (Substrate)

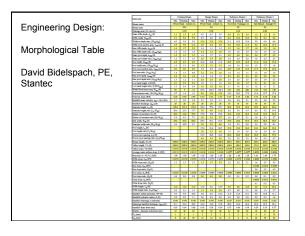
- 6. Silt/Clay: < 0.062 mm
- 5. Sand: 0.062 2 mm
- 4. Gravel: 2 64 mm
- 3. Cobble: 64 256 mm
- 2. Boulder: 256 2048 mm
- 1. Bedrock

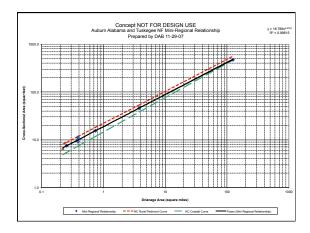
2. Floodplain Structure

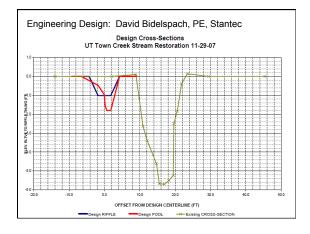
- Regular (every year) flooding to relieve stress
- Floodwater retention & riparian wetlands
- · Stormwater discharge retention & treatment

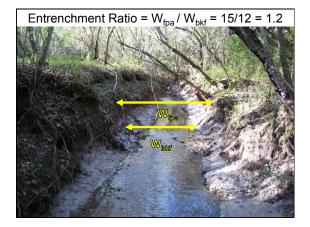

2. Floodplain Structure

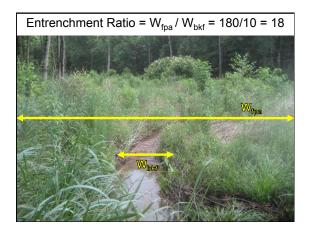

ER = W_{bkf} / W_{rpa} : Entrenchment ratio provides wide floodplain for flood energy dissipation, sediment retention & riparian habitats

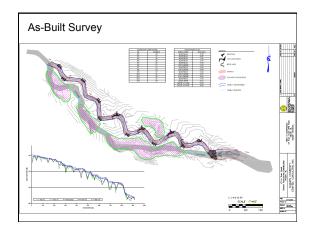

BHR = LBH / d_{mbkrf}: Bank height ratio provides floodplain access at bankfull stage consistently down valley on both banks

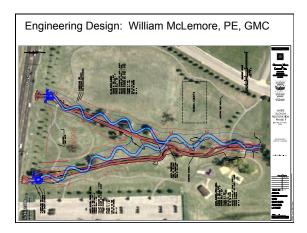

Floodplain orientation minimizes flood flow stresses (straight down valley & consistent width)

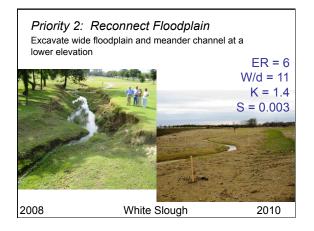

Surface topography supports floodwater retention, flow diversity & riparian habitats

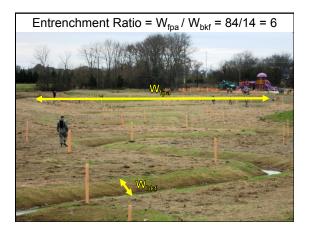


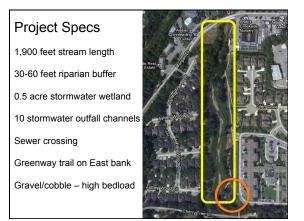


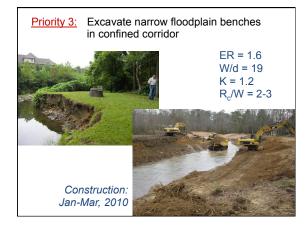


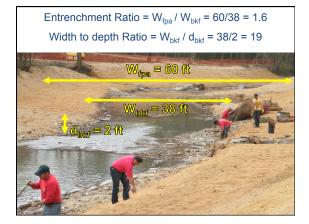


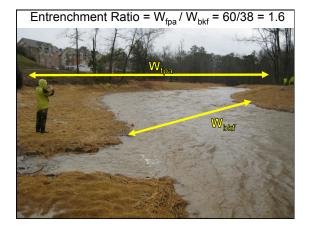







Project Components


- 1. Channel morphology
- 2. Floodplain structure
- 3. Hydrologic & hydraulic analysis
- 4. In-stream structures
- 5. Habitats & vegetation
- Site & watershed conditions
- 7. Monitoring, maintenance, education



In-Stream Structures (11): Boulder & Log

- Grade Control
- Bank Protection

•

- Sediment Transport
- Habitat Enhancement

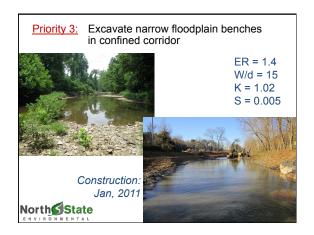
Stormwater Outfall Channels (10)

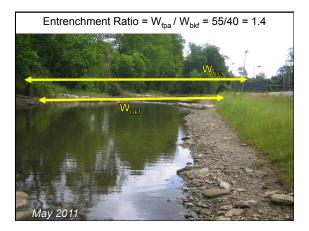
- Vegetated bio-swales (low slope)
- Rock step-pools (high slope)

Construction Practices

- Track equipment
- Spill management plan
- Staged construction phases to limit exposure

Temporary Erosion Control


- · Soil prep, seed, straw
- Biodegradable matting (coir, 700g)
- Wood stakes

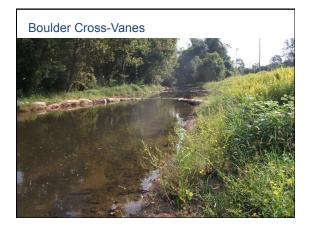


In-Stream Structures (10): Boulder & Log

- Grade Control
- Bank Protection
- Sediment Transport
- Habitat

Log Vane (Grade Control J-Hook)

- 70-ft long log; 30-inch diameter; root wad attached
- 3 % arm slope; 20 degree angle
- Sealed with woven geotextile & backer log
- · Back filled with river cobble, gravel, sand



Boulder Cross-Vanes

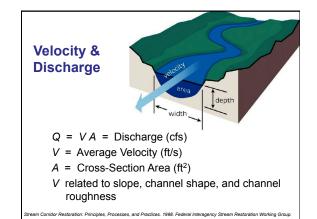
- 1 to 2 ton boulders; 3 % arm slope; 20 degree angle
- Throat extends through center half of channel
- Boulder footers; Sealed with non-woven geotextile
- · Back filled with river cobble, gravel, sand

Floodplain Orientation:

- Straight down valley
- Consistent width to avoid contraction
- Setback from outside meander bends

3. Hydrologic & Hydraulic Analysis

 \mathbf{Q}_{bkr} : Bankfull discharge (cfs) appropriate for watershed size, sediment transport & valley conditions


 V_{av} = Q_{bkf} / A_{bkf} . Bankfull average velocity (ft/s) appropriate for valley, soils, bed material

 τ_{av} : Bankfull average applied shear stress (lb/ft²) & local max stresses appropriate for sediment transport conditions & bed/ bank resistance

 ω_{av} : Bankfull average stream power (lb/ft/s) appropriate for sediment transport conditions

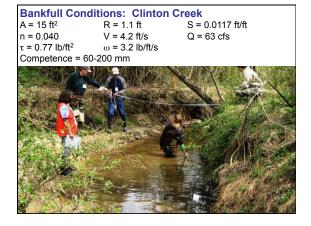
Riffle substrate size distribution appropriate for hydraulic conditions & habitats

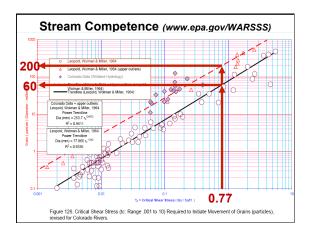
Streambank protection to resist erosion (short-term & long-term)

$$\begin{split} & \text{Manning Equation for Average Velocity} \\ & \mathcal{V} = \frac{k}{n} R_h^{\frac{2}{3}} \cdot S^{\frac{1}{2}} \\ & \text{where:} \\ & \mathbb{V} \text{ is the cross-sectional average velocity (ft/s, m/s)} \\ & \mathbb{k} \text{ is a conversion constant equal to 1.486 for U.S. customary units or 1.0 for SI units } \\ & n \text{ is the Gauckler-Manning coefficient (independent of units)} \\ & \mathcal{R}_h \text{ is the hydraulic ations (ft, m)} \\ & \mathcal{R}_h \text{ is the slope of the water surface or the linear hydraulic head loss (ft/ft, m/m) (S = h_{f'}/L) \\ & \mathcal{R}_h \text{ is the hydraulic radius (ft, m)} \\ & \mathcal{A}_h \text{ is the hydraulic radius (m)} \\ & \mathcal{A}_h \text{ is the hydraulic radius (m)} \\ & \mathcal{A}_h \text{ is the hydraulic radius (m)} \\ & \mathcal{A}_h \text{ is the cross sectional area of flow (m^2)} \\ & \mathcal{P} \text{ is wetted perimeter (m)} \end{split}$$

Type of Channel and Description	Minimum	Normal	Maximum	
Natural streams - minor streams (top width at floodstage	< 100 ft)			
1. Main Channels				
a. clean, straight, full stage, no rifts or deep pools	0.025	0.030	0.033	
b. same as above, but more stones and weeds	0.030	0.035	0.040	
c. clean, winding, some pools and shoals	0.033	0.040	0.045	
d. same as above, but some weeds and stones	0.035	0.045	0.050	
e. same as above, lower stages, more ineffective slopes and sections	0.040	0.048	0.055	
f. same as "d" with more stones	0.045	0.050	0.060	in the
g. sluggish reaches, weedy, deep pools	0.050	0.070	0.080	
h. very weedy reaches, deep pools, or floodways with heavy stand of timber and underbrush	0.075	0.100	0.150	
Mountain streams, no vegetation in channel, bank banks submerged at high stages	ts usually steep	, trees and	brush along	
a. bottom: gravels, cobbles, and few boulders	0.030	0.040	0.050	
b. bottom: cobbles with large boulders	0.040	0.050	0.070	

Shear Stress: *fluid force per unit area acting on the channel bed*


- $\tau_{av} = \gamma R S = Average Shear Stress (lb/ft²)$
- γ = Unit Weight of Water = 62.4 lb/ft³
- R = Hydraulic Radius (ft) = A_{bkf} / P
- S = Average Water Surface Slope (ft/ft)
- A_{bkf} = Riffle Cross-Section Area (ft²)


P = Wetted Perimeter (ft) = $W_{bkf} + 2^*d_{bkf}$ (approx)

Unit Stream Power: rate of energy loss to the channel bed per unit area

 ω_{av} = V τ_{av} = Average Unit Stream Power (lb/ft/s)

V = Average Velocity (ft/s)

