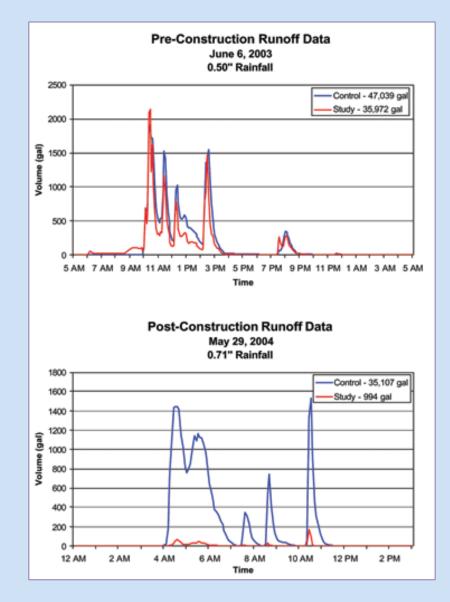
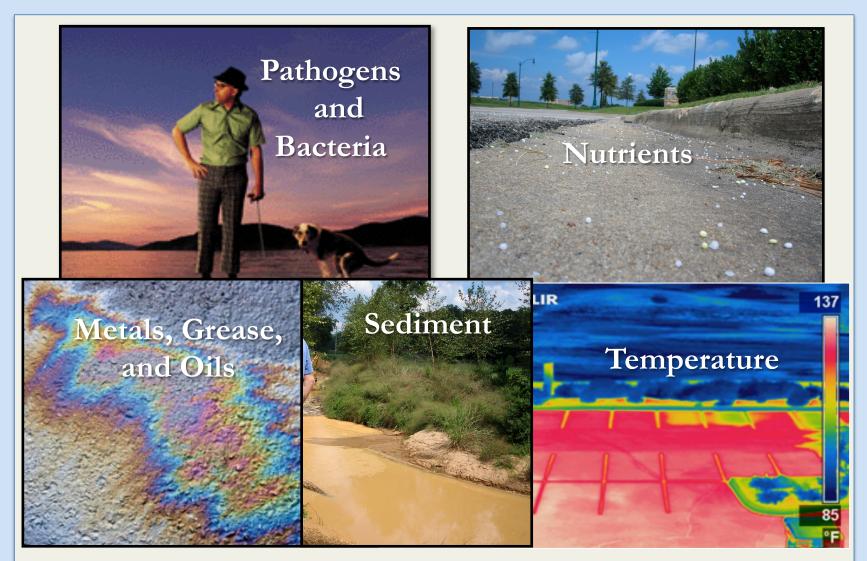
Low Impact Development: Design Considerations

Alabama Low Impact Development Summit April 9, 2014


> Jason Zink, PhD, PE jmzink@gmail.com

Fundamentals


Replicate natural water balance and treatment processes

Goal: Water Balance

Goal: Treatment

LID Principles

Overall:

Decentralized/Integrated/Multi-functional/Multi-beneficial

Engineering:

Retain/Detain/Filter/Infiltrate/Treat/Prevent/Use

Text credit: Larry Coffman, Prince George's County, MD

Toolbox

Site planning

Conservation Minimize clearing Minimize grading Save sandy soils Save drainage patterns Strategic grading

Practices (SCM/BMP)

Reduce impervious surface Disconnect impervious surface Vegetated swale Rain garden/bioretention Porous surface Rainwater harvesting/cistern Infiltration Vegetated buffers Green roof Stormwater treatment wetland

Davenport Park, Asheville

- Narrow roads
- Porous pavers
- Vegetated swale
- Bioretention
- Preserve vegetation
- Cluster development
- <image>
- Rain barrels/rain gardens/drought tolerant landscaping

Davenport Park, Asheville

- Lower site prep costs
- Less paving
- Less conventional stormwater infrastructure
- Fewer ponds = more buildable lots
- Improve aesthetics, increase marketability and value
- If one BMP fails, less impact on water quality

- Small BMPs instead of collection/ conveyance/treatment system
- Reduce stormwater pipe length 89%
- Eliminate 9000 feet curb/gutter
- Eliminate 5 infiltration basins
- Save \$1 million grading
- Gain 4 lots

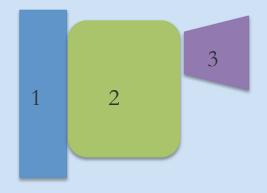
Somerset subdivision, MD:

- ¹/₂ conventional, ¹/₂ LID
- Similar housing density, road length

Cost savings:

Eliminate 4 stormwater ponds: \$650,000

- Eliminate pipe and ditches: \$150,000
- Construct roads without curb/gutter: \$350,000
- Add \$370,000 rain gardens/swales
- Net savings \$780,000


- 15-80% savings (generally 20-30%) in capital stormwater costs (EPA, 2007: Study of 17 LID-based residential and commercial developments)
- \$3500-4800 savings per lot

(Maryland, Illinois, Arkansas)

• Lots sell at \$3000-5000 premium

(North Carolina, Arkansas)

Typical Components

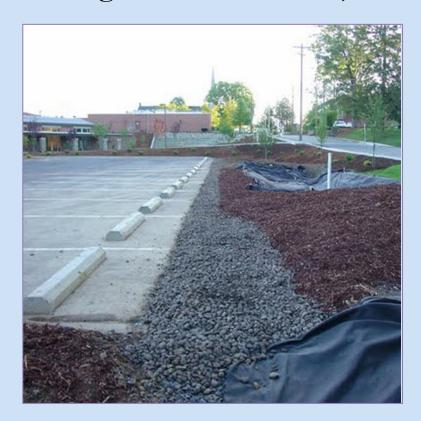
Pretreatment
Primary Treatment
Overflow

Pretreatment:

- Suspended sediment removal
- Preventive maintenance
- Lowers velocity

Pretreatment

If concentrated flow: Use forebay and/or vegetated swale



Pretreatment

If distributed flow:

Use vegetated filter strip and/or gravel verge (8 inches gravel, 4 feet sod)

Overflow

- Existing Overflow Outlet Structure
- Weir and Grassed Swale
- Tie underdrains into overflow or outlet structure

Essential Information: Watershed

Runoff curve numbers for urban areas 1/

Table 2-2a

- Watershed area
- Composition
- Curve Numbers

Cover description		Curve numbers for hydrologic soil group			
	Average percent			· ·	
Cover type and hydrologic condition in	mpervious area 2/	Α	В	С	D
Fully developed urban areas (vegetation established)					
Open space (lawns, parks, golf courses, cemeteries, etc.) ⅔:					
Poor condition (grass cover < 50%)		68	79	86	89
Fair condition (grass cover 50% to 75%)		49	69	79	84
Good condition (grass cover > 75%)		39	61	74	80
Impervious areas:					
Paved parking lots, roofs, driveways, etc.					
(excluding right-of-way)		98	98	98	98
Streets and roads:					
Paved; curbs and storm sewers (excluding					
right-of-way)		98	98	98	98
Paved; open ditches (including right-of-way)		83	89	92	93
Gravel (including right-of-way)		76	85	89	91
Dirt (including right-of-way)		72	82	87	89
Western desert urban areas:					
Natural desert landscaping (pervious areas only) 4/		63	77	85	88
Artificial desert landscaping (impervious weed barrier,					
desert shrub with 1- to 2-inch sand or gravel mulch					
and basin borders)		96	96	96	96
Urban districts:					
Commercial and business		89	92	94	95
Industrial	72	81	88	91	93
Residential districts by average lot size:					
1/8 acre or less (town houses)		77	85	90	92
1/4 acre	38	61	75	83	87
1/3 acre	30	57	72	81	86
1/2 acre	25	54	70	80	85
1 acre	20	51	68	79	84
2 acres	12	46	65	77	82
Developing urban areas					
Newly graded areas					
(pervious areas only, no vegetation) 5/		77	86	91	94
dle lands (CN's are determined using cover types					
similar to those in table 2-2c).					

¹ Average runoff condition, and I_a = 0.2S.

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

³ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type.

4 Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage

(CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

⁵ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4

USDA Urban Hydrology for Small Watersheds (June 1986)

Essential Information: Soils

- Individual Soil Types
- Depth to Water Table
- Hydrologic Soil Group (A, B, C, D)
- Infiltration Rate

Tools:

- Web Soil Survey
- County Soil Survey Maps

http://websoilsurvey.nrcs.usda.gov/app/ HomePage.htm

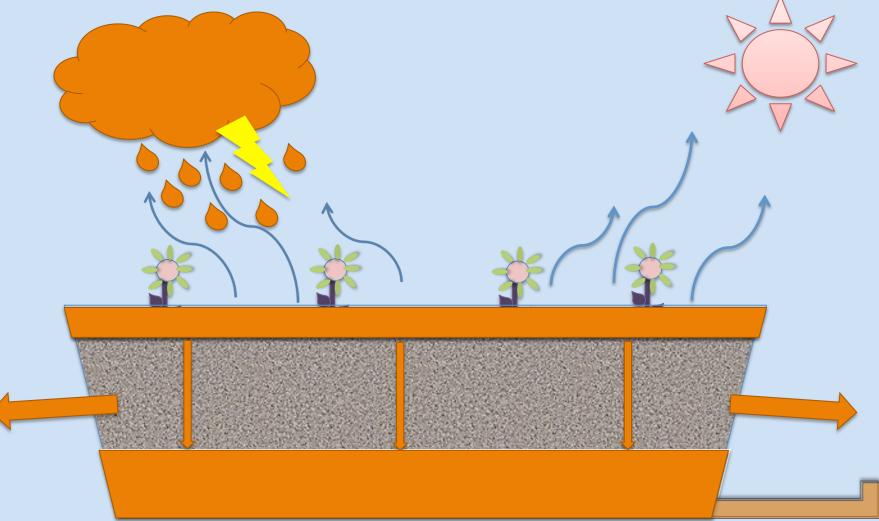
Essential Information: Design Storm

Design storm = First Flush = roughly equivalent to treating 80% of rainfall on an annual basis

First flush precipitation depths generally 1.0"-1.5"

****Check your location****

Bioretention Areas

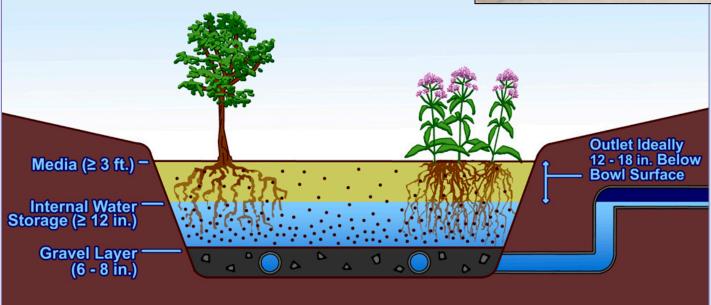

A filtration and infiltration best management practice and landscape feature.

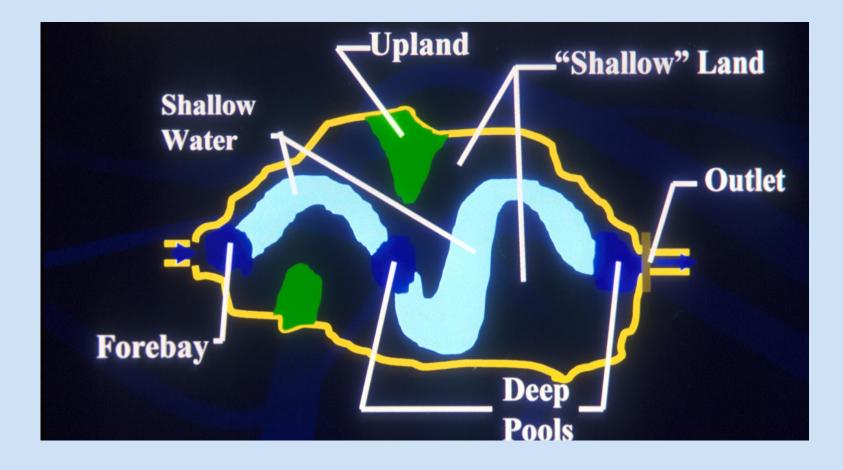
Focuses on HYDROLOGY and POLLUTANT REMOVAL

- Good choice for retrofits
- Can be aesthetically pleasing
- Great water quality treatment
- Water ponding typically <9 hours

Bioretention Areas

East Smiths Station Elementary School




Internal Water Storage

- 90-degree PVC upturned elbow, at least 12" below bowl surface
- Forces elevated outlet
- Promotes exfiltration and ET
- Significant volume reductions

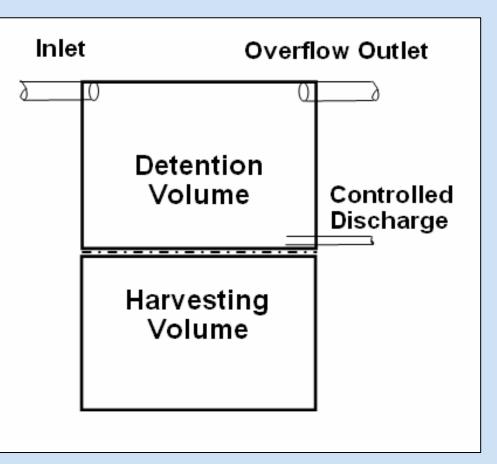
Stormwater Wetland

Stormwater Wetland

- Low-traffic areas
- Only intended to treat water that falls on it
- Maintenance
- Three types:
 - Interlocking pavers
 - Porous asphalt
 - Porous concrete

- Low-traffic areas
- Only intended to treat water that falls on it
- Maintenance
- Three types:
 - Interlocking pavers
 - Porous asphalt
 - Porous concrete

- Low-traffic areas
- Only intended to treat water that falls on it
- Maintenance
- Three types:
 - Interlocking pavers
 - Porous asphalt
 - Porous concrete



Rainwater Harvesting

Rainwater Harvesting

Rainwater Harvesting

Treatment Train

Mars Hill, NC

Photo credit: Tim Ormond, Hydrocycle Engineering

Inspection & Maintenance

- Design for maintenance (access)
- Written I&M agreement
- Education

Typical actions:

- Trash removal
- Mulch/plant replacement
- Check inlet/outlet

Inspection & Maintenance

In-depth analysis of 43 bioretention cells in NC:

- 53% need maintenance
- 44% had sediment deposition on top of mulch
- 65% undersized (mulch too deep or construction errors)

Essential:

- Pretreatment
- Protect surface of media during construction
- Construction oversight

Constraints

Utilities?

Constraints

Elevations?

Constraints

Constraints = Opportunities for Creativity

Photo credit: Tim Ormond, Hydrocycle Engineering